Chapter 2 ๐Ÿšฉ Biomarker Evaluation

2.1 Integrate analysis

โ€ƒThe integrate_analysis() function returns the results of both the differential analysis and survival analysis for a gene or gene set within a dataset (or datasets).

integrate_analysis(SE=MEL_GSE91061, geneSet="CD274")

2.2 Differential analysis

โ€ƒYou can use diff_biomk() to visualize differential analysis result between Pre-Treatment and Post-Treatment patients or Responders and Non-Responders in specified gene.

Pre-Treatment vs Post-Treatment

diff_biomk(SE=MEL_GSE91061,gene='CD274',type='Treatment') +
  ggtitle("Pre-Treatment vs Post-Treatment) +
  theme(plot.title = element_text(hjust = 0.5)) 

Responder vs Non-Responder

diff_biomk(SE=MEL_GSE91061,gene='CD274',type='Response') +
  ggtitle("Responder vs Non-Responder") +
  theme(plot.title = element_text(hjust = 0.5))

2.3 Suvival analysis

โ€ƒYou can use diff_biomk() to visualize survival analysis result in specified gene.

P <- surv_biomk(SE=MEL_GSE91061,gene='CD274')
P$plot <- P$plot +
  ggtitle("Survival analysis") +
  theme(plot.title = element_text(hjust = 0.5))
P

2.4 Calculate comprehensive signature score

โ€ƒBy employing the score_biomk() function, you can obtain a comprehensive signature score matrix for the 23 signatures in TigeR. In this matrix, the columns represent the signature scores, and the rows denote the sample names.

Signature Method PMID
IRS multivariate Cox analysis 35280438
tGE8 median of Z-score 31686036
MEMTS Average mean 35769483
PRGScore Average mean 35479097
Angiogenesis Average mean 29867230
Teffector Average mean 29867230
Myeloid_inflammatory Average mean 29867230
IFNG_Sig Average mean 29150430
TLS Weighted mean 31942071
MSKCC Weighted mean 34421886
LMRGPI Weighted mean 35582412
PRS Weighted mean 35085103
Stemnesssignatures Weighted mean 35681225
GRIP Weighted mean 35492358
IPS Weighted mean 32572951
Tcell_inflamed_GEP Weighted mean 30309915
DDR Z-score;PCA 29443960
CD8Teffector Z-score;PCA 29443960
CellCycleReg Z-score;PCA 29443960
PanFTBRs Z-score;PCA 29443960
EMT1 Z-score;PCA 29443960
EMT2 Z-score;PCA 29443960
EMT3 Z-score;PCA 29443960
sig_res <- score_biomk(MEL_GSE78220)

โ€ƒColumns represent signatures and rows represent sample.

2.5 Assess the Performance of Signature

โ€ƒBy employing the roc_biomk() function, you can assess the performance of built-in and custom signatures in different datasets. โ€ƒThe function will generate a roc object and a curve to assess the predictive performance.

sig_roc <- 
roc_biomk(MEL_PRJEB23709,
          Weighted_mean_Sigs$Tcell_inflamed_GEP,
          method = "Weighted_mean",
          rmBE=TRUE,
          response_NR=TRUE)